High Density Lipoprotein Apolipoproteins Mediate Removal of Sterol From Intracellular Pools but Not From Plasma Membranes of Cholesterol-Loaded Fibroblasts

John F. Oram, Armando J. Mendez, J. Peter Slotte, and Thomas F. Johnson

Cultured cells possess high-affinity binding sites (receptors) for high density lipoprotein (HDL) that appear to mediate removal of excess intracellular cholesterol from cells. To examine the role of intact HDL apoproteins in receptor-mediated cholesterol removal, HDL3 apoproteins were digested with the proteolytic enzymes trypsin and pronase, and the residual particles were used in sterol efflux experiments. Protease treatment abolished the interaction of HDL3 with the 110-kd cell membrane protein postulated to represent the HDL receptor molecule, indicating that this interaction is mediated by HDL apoproteins rather than lipids. Compared with native HDL3, protease-modified HDL3 had a markedly reduced ability to selectively remove sterol from intracellular pools, even though modified particles promoted greater cholesterol efflux from the plasma membrane than did native particles. These results indicate that whereas sterol efflux from plasma membranes is mediated by HDL lipids, removal of excess intracellular sterol from cells is mediated by HDL apoproteins. These findings are consistent with the hypothesis that receptor binding of HDL apoproteins stimulates translocation of excess intracellular sterol to the cell surface where it becomes accessible for removal by HDL or other lipid-rich acceptor particles. (Arteriosclerosis and Thrombosis 1991;11:403–414)

Studies from many different laboratories have demonstrated the existence of high-affinity binding sites on cultured cells and cellular membranes that specifically bind high density lipoprotein (HDL). Recent studies from our laboratory have characterized a 110-kd membrane-binding protein that has many features in common with the high-affinity binding sites on intact cells. The cellular binding sites and the isolated protein interact with HDL3 and phospholipid vesicles containing either apoprotein (apo) A-I or apo A-III but do not appear to interact with low density lipoprotein (LDL), acetylated LDL, or vesicles containing apo E. Moreover, the binding of HDL to intact cells and the isolated 110-kd protein is enhanced when cells are loaded with cholesterol or when the rate of cell proliferation is inhibited. These similar specificity and regulatory properties suggest that the 110-kd binding protein is a component of the cell-surface HDL binding sites on intact cells.

Recent studies from our laboratory have provided evidence that the cellular HDL binding sites represent receptors that mediate transport of excess intracellular cholesterol from cells. Incubation of cholesterol-loaded cells with HDL3 stimulates translocation of radiolabeled sterol from intracellular pools to the plasma membrane and into the culture medium. This stimulation appears to require the interaction of HDL with cell-surface binding sites, since modification of HDL3 with tetraniromethane (TNM) reduces its ability both to bind to cells and to stimulate translocation and efflux of intracellular sterol. Because TNM treatment causes extensive covalent cross-linking of apoprotein, lipids, or particle conformations accounted for the reduction in either cell-surface binding or sterol transport. Evidence that lipids rather than apoprotein mediate cell-surface binding of HDL particles was provided by Tabas and Tall in a study showing that trypsin treatment of HDL particles failed to impair its ability to interact with cells.
The purpose of the current study was to directly examine the role of intact apolipoproteins in HDL receptor-mediated transport of excess cholesterol from cells. To remove intact apolipoproteins from HDL, conditions that preserve the native lipid composition of the particles, apolipoproteins were digested by mild treatment with proteolytic enzymes. We then tested these protease-modified particles for their ability to bind to the 110-kd HDL binding protein and to promote efflux of cellular cholesterol from the plasma membrane and intracellular pools. Results indicate that whereas removal of cholesterol from plasma membranes is mediated by HDL lipids, HDL binding to the candidate receptor protein and selective removal of intracellular cholesterol require the presence of intact apolipoproteins in HDL particles.

Methods

Cells and Cell Membranes

Cultured human skin fibroblasts and bovine aortic endothelial cells were grown and maintained in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal bovine serum as described previously. For cholesterol efflux experiments, fibroblasts were plated into 35-mm dishes at a density of 5 to 7 x 10⁵ cells/dish and grown to confluence (7–9 days). For preparation of cell membranes used in ligand-blotting studies, endothelial cells were plated and grown to confluency in 150-mm dishes.

Cell membranes were prepared according to Basu et al. Briefly, washed endothelial cell monolayers were dislodged from dishes with a nylon policeman into 0.15 M NaCl, 1 mM benzamidine, 1 mM phenylmethylsulfonyl fluoride (PMSF) dissolved in dimethyl sulfoxide, and 10 mM Tris HCl, pH 7.4. Cells from four to five dishes were combined, pelleted by centrifugation at 200g for 5 minutes, resuspended in the same buffer, homogenized with two 5-second pulses of a polytron homogenizer (Tekmar model No. 1810 with 10EN shaft, Cincinnati, Ohio), and then centrifuged at 800g for 10 minutes at 4°C. The supernatant was centrifuged at 100,000g for 60 minutes at 4°C, and the pellet was stored frozen for use in ligand-blotting studies.

Lipoproteins

Lipoproteins were isolated from human plasma by standard sequential ultracentrifugation techniques (LDL, d = 1.019–1.063 g/ml; HDL₉, d = 1.125–1.210 g/ml). Lipoproteins were iodinated by the modified McFarlane monoclonal procedure (Bilheimer et al). Proteolytic digestion of HDL₉ apolipoproteins was performed by a modification of the method described by Hahm et al. The proteolytic enzymes used for the digestions were trypsin (from bovine pancreas) (GIBCO, Grand Island, N.Y.) dissolved in 0.1 M Tris/0.01 M CaCl₂, pH 8.0, and pronase (from Strepomyces griseus) (Sigma Chemical Co., St. Louis, Mo.) dissolved in 0.1 M Tris HCl, pH 7.3. To start the reaction, 200 μl enzyme solution was added to 1.0 ml of 0.15 M NaCl and 1 mM EDTA (pH 7.2) containing 10 μg HDL₉ at an enzyme-to-lipoprotein ratio of 1:40 (wt/wt). The reaction was continued for either 30 minutes (pronase) or 60 minutes (trypsin) at 37°C and then stopped by addition of 20 μl 0.1 M PMSF in ethanol. The reaction mixture was cooled to 4°C, and protease-modified core particles were isolated from cleaved and dissociated peptides by chromatography on a Sephadex G-75 column (Pharmacia LKB Biotechnology, Inc., Piscataway, N.J.). The modified particles were dialyzed at 4°C against 0.15 M NaCl plus 1 mM EDTA, filtered (0.22-μm pore size), and stored at 4°C. Control HDL₉ ("native" HDL₉) was subjected to the same protocol as trypsin-treated HDL₉ except that the enzyme was omitted from the reaction mixture. An aliquot was assayed for protein and phospholipid composition.

Electrophoresis

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) was performed by the method of Laemmli using a 12.5-17% gradient gel. Analysis of HDL₉ particle size was performed by nondenaturing gradient gel electrophoresis as described previously. Proteins were identified by Coomassie Blue staining.

Ligand Blotting

Membrane pellets were solubilized by needle aspiration into SDS-PAGE electrophoresis buffer (with β-mercaptoethanol) and boiled for 3 minutes. Samples containing equal amounts of protein (500 μg) per lane were electrophoresed on 7% polyacrylamide slab gels, and separated proteins were transferred to nitrocellulose membranes (0.45 μm) by electrophoresis. To assay binding activity, nitrocellulose membranes were first incubated for 2 hours at room temperature with blocking buffer (10 mM Tris HCl, pH 7.4, 150 mM NaCl, 10% [wt/vol] nonfat dried milk, 0.01% [vol/vol] antifoam A, 50 μg/ml LDL) and then incubated for 2 hours at room temperature in the same buffer containing 5 μg/ml ³²P-HDL₉ (4 μM phospholipid) plus the indicated concentration of competitor. Nitrocellulose membranes were washed at room temperature once rapidly and then five times for 10 minutes with LDL-free blocking buffer. Protein bands were visualized by autoradiography.

Differential Radiolabeling of Cellular Cholesterol Pools

Fibroblasts were loaded with cholesterol by incubation for 48 hours with serum-free DMEM containing 2 mg/ml bovine serum albumin (BSA) plus 50 μg/ml cholesterol added in ethanol (from a 10 mg/ml cholesterol stock). To enrich intracellular membranes with [³H]cholesterol under conditions that minimize sterol translocation to the plasma membrane, cells were pulsed with [³H]mevalonolactone. Initially, pulse incubations were performed at 15°C since previous studies showed that newly synthesized sterol was transferred to the plasma membrane at a slow rate at this tempera-
glutaraldehyde for 10 minutes at 0°C. The fixed cells were washed, cells were fixed by exposure to 1% formaldehyde for 10 minutes at 0°C during the last wash. Dishes then received ice-cold N-2-(hydroxyethyl)piperazine-N'-2-ethanesulfonic acid (HEPES)–buffered DMEM containing 1 mg/ml BSA, 2 µg/ml acyl coenzyme A:cholesterol acyltransferase (ACAT) inhibitor 58.035 (Sandoz, East Hanover, N.J.), and 0.4 mM [3H]mevalonolactone (10 µCi/ml). Cells were incubated in a 15°C water bath for 6 hours, chilled on ice, washed five times with ice-cold buffer, and used in sterol efflux and translocation experiments. Cells were treated identically for the 37°C pulse incubation except that they were maintained at room temperature during the last wash, labeling media were prewarmed to 37°C, and cells were incubated in a 37°C water bath for 3 hours.

To enrich plasma membranes of cholesterol-loaded fibroblasts with [3H]cholesterol, cells were washed at room temperature five times with wash buffer and incubated at 37°C with HEPES-buffered DMEM containing 1 mg/ml BSA and 0.2 µCi/ml [3H]cholesterol (55 µCi/nmol) added in ethanol. After 2 hours, cells were chilled on ice; washed five times with ice-cold buffer, and used in cholesterol efflux studies. This procedure specifically radiolabels plasma membrane pools of cholesterol, since short-term incubation with trace quantities of [3H]cholesterol leads to incorporation of isotope into plasma membranes without significant transfer to intracellular membranes.10,11,22

Sterol Efflux From Cells

Washed cell monolayers were extracted with hexane/isopropanol (3:2, vol/vol) as previously described.23 Lipids were extracted from efflux medium by the method of Folch et al.24 Sterol species were separated on silica gel G thin-layer chromatography plates (PEGilG, Whatman, Clifton, N.J.), developed in heptane/diethyl ether/methanol/acetic acid (80:30:10:2, vol/vol/vol/vol) and were detected with I. For isotope measurements, individual spots corresponding to cholesteryl esters, free cholesterol, and cholesteryl esters were scraped into scintillation vials and counted. The biosynthetically labeled sterols that migrate with the cholesterol in this system represent 27-carbon sterol intermediates, which include cholesteryl, desmosterol, and cholesterol but exclude lanosterol and its precursors. When fibroblasts were pulsed with [3H]mevalonolactone, greater than 85% of the newly synthesized 27-carbon sterols were oxidized and comigrated with cholesteryl after extraction from silica gel with isopropanol, treatment with cholesterol oxidase, and rechromatography. Thus, since cholesterol oxidase appeared to react with all 27-carbon sterols, it was necessary to treat them as a homogeneous pool when using the cholesterol oxidase assay to measure cellular distribution of labeled sterol. To determine sterol mass, free and esterified cholesterol spots were scraped, extracted, and assayed by the cholesterol oxidase procedure described previously.23

Cholesterol Esterification and Sterol Biosynthesis

To assess the relative activity of ACAT and the sterol biosynthetic pathway, cells were washed and incubated for 1 hour at 37°C with serum-free medium containing [14C]oleate (20 µM) bound to albumin (0.3 mg/ml). Cells were then chilled on ice, washed twice with cold buffer, and extracted in hexane/isopropanol. Lipid subclasses were separated by thin-layer chromatography, and incorporation of 14C radioactivity into esterified and unesterified cholesterol was measured as described previously.25 Incorporation of radiolabel into esterified sterol represents sterol esterification by ACAT. Incorporation of radiolabel into unesterified sterol represents biosynthe-
Results

Characterization of Protease-Modified High Density Lipoprotein 3

To degrade intact HDL₃ apoproteins, lipoprotein particles were treated with the proteolytic enzymes trypsin or pronase as described in “Methods.” These treatment protocols reduced the Lowry-reacting proteins in the HDL₃ particles by 40–50% (trypsin) and 50–70% (pronase). SDS-PAGE showed that both trypsin-modified HDL₃ (TrHDL₃) and pronase-modified HDL₃ (PrHDL₃) contained no detectable intact apo A-II but retained a small amount of intact apo A-I (Figure 1). Pronase treatment consistently caused a more extensive degradation of apo A-I than did trypsin treatment. Most of the assayable protein that remained associated with the protease-modified particles was in the form of low-molecular-weight peptides. For the gel shown in Figure 1, the same amount of total protein was added for each sample. Thus, the lanes with protease-modified HDL₃ contained protein from two to three times more particles than did the lane for native HDL₃. Based on densitometric scanning of this and other gels, it was estimated that protease treatment completely or partially digested greater than 80% of the HDL₃ apoproteins.

Modified and native particles had the same ratios of unesterified and esterified cholesterol to phospholipid, indicating that the relative composition of the major HDL₃ lipid components was unchanged by treatment with either enzyme (data not shown), as also reported by others. Nondenaturing gradient gel electrophoresis indicated that the size distribution of HDL₃ particles was unaffected by protease treatment. To normalize values for particle concentration and surface area, lipoproteins were quantified according to phospholipid content.

Recent studies from our laboratory have identified a 110-kd membrane protein that specifically binds HDL and phospholipid vesicles containing apo A-I and apo A-II. To test the effects of proteolytic degradation of HDL₃ apoprotein binding to this candidate receptor protein, we performed competitive binding studies using the ligand blotting protocol described in “Methods.” The choice of cell type for these studies was cultured bovine aortic endothelial cells, since membranes from these cells have a high abundance of HDL-binding protein. The same protein appears to be present in cultured fibroblast membranes.

When endothelial cell membrane proteins were separated by SDS-PAGE and transferred to nitrocellulose membranes, autoradiographs revealed a 110-kd protein that interacted with ¹²⁵I-HDL₃ (Figure 2). The addition of excess unlabeled HDL₃ to the binding medium reduced the signal by more than 80%, indicating that ¹²⁵I-HDL₃ binding to this protein is saturable and can be reduced by competition with unlabeled ligand. However, addition of excess unlabeled TrHDL₃ or PrHDL₃ had little effect on ¹²⁵I-HDL₃ binding to the 110-kd protein, indicating that protease-modified lipoproteins interact poorly with the HDL-binding protein.

Promotion of Cholesterol Efflux From Different Cellular Pools by High Density Lipoprotein 3 and Protease-Modified High Density Lipoprotein 3

Previous results from our laboratory have suggested that binding of HDL to its high-affinity bind-
FIGURE 2. Photograph of competitive binding of native and protease-modified high density lipoprotein 3 (HDL₃) to HDL-binding protein isolated from cell membranes. Bovine aortic endothelial cells were pretreated for 48 hours with medium containing 10% lipoprotein-deficient serum plus 50 μg/ml nonlipoprotein cholesterol before preparation of cell membranes. Membrane proteins were separated by 7% sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose membranes, and subjected to the ligand-blotting protocol described in "Methods." Binding medium contained ¹²⁵I-HDL₃ (4 μM phospholipid) in the absence of competitor (left lane) or in the presence of 40-fold molar excess of either native HDL₃, trypsin-modified (Tr) HDL₃, or pronase-modified (Pr) HDL₃ phospholipid. After binding, incubations, and washes, protein bands were identified by autoradiography.

To prelabel intracellular pools of unesterified sterol without increasing sterol mass, cells were pulsed with the biosynthetic precursor [³H]mevalonolactone in the presence of an ACAT inhibitor. With this procedure, less than 50 ng/mg cell protein of newly synthesized sterol mass was introduced into cellular pools. [³H]mevalonolactone was chosen as a precursor because it bypasses hydroxymethylglutaryl coenzyme A reductase, the enzyme in the biosynthetic pathway that undergoes the largest degree of regulation in response to changes in cell cholesterol content.

Before the efflux studies, experiments were conducted to test the effects of cholesterol loading on biosynthetic labeling of sterol and its cellular distribution. To assess the relative distribution of sterol between cellular pools, cells were fixed with glutaraldehyde and treated with cholesterol oxidase (see "Methods"). When fibroblasts were preincubated with lipoprotein-deficient serum to deplete cells of cholesterol, most of the biosynthetically labeled sterol appeared in cholesterol oxidase-accessible pools (Figure 3), presumably because of rapid translocation to the plasma membrane. Addition of nonlipoprotein cholesterol to this medium led to a reduction in both sterol synthesis and the relative proportion of labeled sterol appearing in cholesterol oxidase-accessible pools. Removal of serum from either the cholesterol-free or cholesterol-enriched
medium caused a further suppression of sterol synthesis and cholesterol oxidase accessibility, probably because serum growth factors were removed. Previous studies have suggested that inhibition of cell proliferation increases the pool size of the intracellular sterol that regulates biochemical processes. The lowest rates of sterol synthesis and incorporation of newly synthesized sterol into cholesterol oxidase-accessible pools occurred when cells were loaded with cholesterol in the absence of serum and in the presence of an ACAT inhibitor. Thus, as cells accumulate more unesterified cholesterol, there are progressive decreases in both the rates of sterol synthesis from mevalonolactone and relative cholesterol oxidase accessibility.

The decrease in cholesterol oxidase accessibility caused by cholesterol loading of cells could not be attributed to reduced biosynthesis of radiolabeled sterol. A time course revealed that the distribution of newly synthesized [3H]sterol between cholesterol oxidase-accessible and inaccessible pools in cholesterol-loaded cells reached equilibrium within 2 hours (Figure 4B), even though the cellular content of [3H]mevalonolactone-derived sterol continued to increase after 2 hours. Thus, translocation of [3H]sterol between these cellular pools is not a function of the amount of [3H]sterol tracer that accumulates within the cell.

The above results suggest that cholesterol loading of cells traps newly synthesized radiolabeled sterol within intracellular pools of cholesterol that are inaccessible to cholesterol oxidase. These pools appear to be in rapid equilibrium with the substrate pool for the microsomal esterifying enzyme ACAT. When the ACAT inhibitor was omitted during the 3-hour pulse-labeling incubations, more than 73% of the newly synthesized sterol between cholesterol oxidase-accessible pools. Thus, it appears that HDL apo facilitate efflux of biosynthetically labeled sterol only when cells are loaded with cholesterol, and most of the labeled sterol initially resides in intracellular pools that are inaccessible to cholesterol oxidase. In contrast, HDL apo do not appear to play a role in promoting sterol efflux from cholesterol-depleted cells when most of the label resides within the plasma membrane.

These studies raise the possibility that HDL apo selectively mediate removal of intracellular sterol from cholesterol-loaded cells. To further test this possibility, [3H]sterol efflux was measured after cholesterol-loaded fibroblasts were pulsed with either [3H]mevalonolactone, to selectively label intracellular sterol pools, or trace quantities of [3H]cholesterol to

![Figure 4](http://atvb.ahajournals.org/DownloadedFrom)

Figure 4. Line plots of time course for sterol synthesis and translocation in cholesterol-loaded fibroblasts. Cultured fibroblasts were loaded with cholesterol by pretreatment with serum-free medium plus cholesterol plus ACAT inhibitor 58.035 and pulsed with [3H]mevalonolactone as described in Figure 3 legend. After the indicated time (hours, h), cells were fixed and treated with cholesterol oxidase (CO) in hypotonic buffer for 30 minutes, and incorporation of label in CO-accessible (○) and CO-inaccessible (●) sterol was measured as described in "Methods." Results are mean of three incubations expressed as either radioactivity counts ([3H]-sterol, cpm/dish; panel A) or percent of total [3H]-sterol (panel B). Standard error bars are included in panel A unless within the dimension of the symbols. ACAT, acyl coenzyme A:cholesterol acyltransferase.
TABLE 1. Esterification of [3H]Mevalonolactone-Derived Sterols in Cholesterol-Loaded and -Depleted Fibroblasts

<table>
<thead>
<tr>
<th>Sterol (cpm/dish)</th>
<th>Fibroblast type</th>
<th>Unesterified</th>
<th>Esterified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cholesterol loaded</td>
<td>144±24</td>
<td>383±27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(27%)</td>
<td>(73%)</td>
</tr>
<tr>
<td></td>
<td>Cholesterol depleted</td>
<td>892±107</td>
<td>91±12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(91%)</td>
<td>(9%)</td>
</tr>
</tbody>
</table>

Cultured fibroblasts were either cholesterol loaded (serum-free medium plus cholesterol) or cholesterol depleted (10% lipoprotein-deficient serum) and incubated for 3 hours at 37°C with [3H]mevalonolactone as described in Figure 3 legend except that acyl coenzyme A:cholesterol acyltransferase inhibitor was omitted during the labeling incubation. Cell lipids were extracted and radiolabeled, and unesterified and esterified cholesterol was measured as described in "Methods." Each value represents mean±SEM of 12 incubations. Values in parentheses represent percent total counts.

label plasma membranes. Again, native HDL₃ was more effective than either TrHDL₃ or PrHDL₃ in promoting labeled sterol efflux derived from a biosynthetic precursor (Figure 6A). However, similar to what was observed for efflux of biosynthetically labeled sterol from cholesterol-depleted cells (Figure 6B), modified forms of HDL₃ were slightly better acceptors than were native particles for [3H]cholesterol associated with the plasma membrane of cholesterol-loaded cells but not from the plasma membrane.

Addition of native HDL₃ to the chase medium increased efflux of biosynthetically labeled sterol from cholesterol-loaded fibroblasts during the first 2 hours of incubation, after which efflux subsided (Figure 7). This early rapid-efflux phase was not evident when cells were exposed to an equal concentration of TrHDL₃.

Lipoprotein-Mediated Translocation of Cholesterol Between Cellular Pools

Our previous studies suggested that HDL₃ selectively removes intracellular sterol by stimulating translocation of sterol from intracellular pools to the cell surface where it becomes accessible to HDL₃ particles. To assess the role of HDL apop in this translocation process, we measured the effects of native or TrHDL₃ on the distribution of endogenously synthesized [3H]sterol between cellular pools.
that are inaccessible or accessible to cholesterol oxidase.

As shown earlier (Figure 3), when sterol pools of cholesterol-loaded fibroblasts are labeled with \[^{3}H\]mevalonolactone, most of the \[^{3}H\]sterol is incorporated into pools that are inaccessible to cholesterol oxidase. This distribution of \[^{3}H\]sterol was maintained even when cells were chased for 3 hours at 37°C with lipoprotein-free medium containing the unlabeled precursor (data not shown). Addition of native HDL\(_3\) to the chase medium led to an increase in cholesterol oxidase-accessible \[^{3}H\]sterol associated with a decrease in cholesterol oxidase-inaccessible \[^{3}H\]sterol (Figure 8A). In contrast to native HDL\(_3\), TrHDL\(_3\) had little effect on the redistribution of biosynthetically labeled \[^{3}H\]sterol between cellular pools (Figure 8B). These results are consistent with our previous studies\(^{10,11}\) showing that HDL\(_3\) stimulates translocation of sterol from intracellular sites that are inaccessible to cholesterol oxidase to sites that are accessible to this enzyme. This stimulatory process appears to be mediated by HDL apol.

Effects of Native and Trypsin-Modified High Density Lipoprotein on Depletion of Sterol Mass Within Intracellular Pools

To test whether the HDL\(_3\)-stimulated depletion of biosynthetically labeled sterol within cholesterol oxidase-inaccessible pools represents net mass movement of intracellular sterol, we measured the effects of native and TrHDL\(_3\) on the activities of two biochemical processes known to be regulated reciprocally by changes in the size of microsomal pools of sterol: cholesterol esterification (ACAT activity) and sterol biosynthesis. The relative activities of these two processes were assayed by pulse incubating cells for 1 hour with \[^{14}C\]oleate and measuring the incorporation of radiolabel into free and esterified cholesterol (see "Methods"). When cholesterol-loaded fibroblasts were incubated with lipoprotein-free
medium, the relative activities of ACAT and the sterol biosynthetic pathway remained constant for up to 8 hours (Figures 9A and 9B). Addition of HDL₃ to the medium led to a decrease in ACAT activity (Figure 9A) in association with an increase in the rate of sterol synthesis (Figure 9B), indicating that HDL₃ depleted cells of intracellular sterol pools that regulate these two processes. In contrast, TrHDL₃ had no effect on either ACAT activity or the rate of sterol biosynthesis.

To monitor efflux of plasma membrane-derived cholesterol in the same experiment, plasma membranes were radiolabeled by incubating with [³H]cholesterol in the sterol-loading medium. After an 18-hour incubation with cholesterol-free medium to allow equilibration of cellular sterol pools, more than 80% of the isotope was found to be accessible to cholesterol oxidase (data not shown) and thus, mostly resided in pools other than those radiolabeled with biosynthetic tracer. Efflux of [³H]cholesterol was increased by addition to the medium of both forms of HDL₃ particles (Figure 9C). These results further indicate that depletion of intracellular regulatory sterol pools but not other pools of cholesterol is mediated by HDL apol.

HDL apol also mediate depletion of intracellular sterol pools derived from the uptake and degradation of LDL particles. When HDL₃ was added to medium containing LDL during 24-hour incubations, there was a dose-dependent decrease in the ACAT activity (Figure 10A) in parallel with a decrease in the cellular cholesteryl ester content (Figure 10B). These data are consistent with previous results showing that HDL₃ removes intracellular sterol at a rate that exceeds delivery of LDL sterol, even though receptor-mediated uptake of LDL is enhanced by addition of HDL₃ (apparently in response to depletion of the intracellular sterol regulatory pool). In contrast to native HDL₃, addition of TrHDL₃ or PrHDL₃ to the LDL medium had little effect on either ACAT activity or cellular cholesteryl ester mass. The much larger pool of unesterified cholesterol, most of which presumably resides in plasma membranes, decreased only slightly in the presence of increasing concentrations of either unmodified or modified HDL₃ (Figure 10C). These results are consistent with the conclusion that HDL₃ apol rather than lipids, mediate the selective removal of intracellular pools of cholesterol.

Discussion

The current study demonstrates that digestion of HDL₃ apol with proteolytic enzymes reduces the ability of HDL₃ to remove sterol from cholesterol-loaded fibroblasts. Exposure of cholesterol-loaded cells to HDL₃ suppressed ACAT activity, decreased cholesteryl ester mass, and stimulated efflux of labeled sterol associated with the plasma membrane. All these effects were markedly reduced by treatment of HDL₃ with trypsin or pronase. In contrast, protease treatment did not reduce the ability of HDL₃ to promote efflux of labeled sterol associated with the plasma membrane. These results indicate that HDL₃ apol mediate selective removal of excess cholesterol from intracellular pools of sterol-laden cells.

For some of the selective-removal assays used in this study, unesterified cholesterol pools were radiolabeled by incubating cells with the biosynthetic precursor [³H]mevalonolactone in the presence of an ACAT inhibitor. This procedure has the advantage over labeling with lipoprotein-derived cholesterol in that microsomal pools are labeled rapidly without the delay imposed by the endocytic/lysosomal pathway. Of the 27-carbon sterols synthesized by fibroblasts during short-term incubations with [³H]mevalonolac-
The biosynthetically labeled 27-carbon sterols also appear to behave as a homogeneous pool with respect to sterol trafficking. Twenty-seven-carbon sterols excreted from cells in the presence of HDL₃ have a subspecies composition similar to that retained by cells, indicating that the different subspecies are transported within and from cells at similar rates. These findings are consistent with a recent study by Echevarria et al showing that endogenously synthesized zymosterol and cholesterol are transported from cells with the same kinetics. Therefore, it was assumed that labeling sterol pools with a biosynthetic precursor in the presence of an ACAT inhibitor was a valid procedure for studying efflux of cholesterol derived from intracellular pools.

Treatment of cells with cholesterol oxidase was used to monitor movement of labeled sterol between cellular pools. Many studies have shown that plasma membrane cholesterol is converted to cholesterolone by treatment of cells with cholesterol oxidase. In contrast, at least some pools of intracellular cholesterol are inaccessible to oxidase treatment. Tabas et al reported that incubation of macrophages with ACAT-stimulating lipoproteins or 25-hydroxycholesterol increased translocation of radiolabeled cholesterol from cholesterol oxidase-accessible to cholesterol oxidase-inaccessible pools, concomitant with increased cholesterol esterification.

Similar results were obtained when fibroblasts were treated with an enzyme that degrades plasma membrane sphingomyelin. These studies suggest that plasma membrane–derived cholesterol is transported to a cholesterol oxidase–inaccessible pool before being esterified. Other investigators have demonstrated that newly synthesized sterol first enters a cholesterol oxidase–inaccessible pool before transport to the plasma membrane. The current study extends our previous reports by showing that loading cells with cholesterol and inhibiting cell proliferation suppress the rate at which newly synthesized sterol tracer is translocated from oxidase-accessible to oxidase-accessible pools. The most straightforward explanation for these results is that as cells accumulate cholesterol or require less for new membrane synthesis, the newly synthesized sterol becomes trapped within intracellular pools of cholesterol, which are translocated very slowly to the plasma membrane.

Exposure of cholesterol-loaded cells to native HDL₃ but not to TrHDL₃ decreased the amount of labeled sterol within cholesterol oxidase–inaccessible pools and increased the amount within oxidase-accessible pools. These data suggest that the interaction of HDL₃ apos with cholesterol-loaded cells stimulates translocation of sterol from one intracellular pool to other cellular pools that are accessible to cholesterol oxidase. It cannot be concluded that the intracellular sterol is translocated exclusively to the plasma membrane, since recent studies have shown that cholesterol oxidase treatment may damage cell membranes and expose some intracellular pools to the enzyme. Although the precise cellular locations of the cholesterol oxidase–accessible pools

![Figure 10](image-url)
are unknown, they are likely to represent intermediates in the excretory pathway, since the HDL-stimulated translocation of labeled sterol from cholesterol oxidase-inaccessible to -accessible pools was associated with a parallel increase in cholesterol efflux.

Stimulation of radioabeled sterol translocation and efflux by HDL₃ reflects net mass transport of cholesterol. Exposure of cells to HDL₃ suppressed ACAT activity and reduced the cellular cholesterol ester content, implying that HDL₃ depleted the intracellular cholesterol mass that was a substrate for ACAT. Protease treatment of HDL₃ almost completely abolished the ability of HDL₃ to deplete this intracellular pool, indicating that this process is mediated by HDL apoproteins. Taken together, these different assays provide evidence that HDL₃ apos activate one or more steps that translocate unesterified cholesterol from ACAT-accessible intracellular pools into an excretory pathway.

It is unlikely that the stimulatory effect of HDL₃ on sterol translocation is secondary to removal of cholesterol from the plasma membrane. HDL₃ treated with either TNM₁₀,₁¹ or proteases (this study) has the same or greater ability than untreated HDL₃ to promote efflux of plasma membrane sterol, and yet the modified particles do not stimulate sterol translocation. Incubation of LDL-treated cells with native or modified HDL₃ caused similar small decreases in unesterified cholesterol mass, most of which presumably resides in the plasma membrane, indicating that both types of particles promoted net transport of cholesterol from the plasma membrane. Thus, our data demonstrate that flux of sterol between the plasma membrane and HDL particles is not mediated by the interaction of HDL apoproteins with cells, in agreement with results reported by others.₆⁻₈

The protease treatment protocols used in the current study do not provide information about the nature of the apos involved in stimulating intracellular sterol translocation. When HDL₃ was treated with either trypsin or pronase, most of the apos were degraded to peptide fragments. Studies using isolated HDL₃ apoproteins are currently being conducted in our laboratory. Preliminary results indicate that lipid-free apo A-I can stimulate translocation of intracellular sterol to the plasma membrane under conditions where sterol efflux does not occur, suggesting that apo A-I alone can modulate the sterol translocation pathway. It is not yet known if other HDL apoproteins have any direct effect on sterol trafficking in cells.

Although there are several possible explanations for the stimulatory effect of HDL apoproteins on translocation and efflux of intracellular sterol, one possibility is that HDL conveys a signal to cells to initiate translocation of excess intracellular sterol to the plasma membrane, a process that may be mediated by receptor binding of HDL apoproteins. We have identified a 110-kd membrane protein that has many features predicted for an HDL receptor, including specificity for HDL apoproteins and regulation by changes in cell cholesterol content.¹⁹ The current study shows that binding of HDL to this candidate receptor protein is reduced by protease treatment of the lipoprotein particles. The HDL receptor hypothesis is consistent with earlier studies,¹² showing that some but not all of the cholesterol efflux from sterol-loaded cells correlates with binding of HDL₃ to high-affinity sites on the cell surface. It is now apparent that sterol efflux from cells has at least two components: sterol translocation and efflux from intracellular pools, and transport of plasma membrane sterol to extracellular acceptor particles. It is only the first component that is mediated by HDL apoproteins, possibly through their interaction with cell-surface receptors.

Acknowledgments

The authors wish to thank Karin Sundquist, Carolyn Johnson, Ayo Bowen, and Maria Culala for excellent technical assistance and Kristi McIntyre and Beatrice Ryan for skillful manuscript preparation.

References

10. Slotte JF, Oram JF, Bierman EL: Binding of high density lipoprotein to cell receptors promotes translocation of cholesterol from intracellular membranes to the cell surface. J Biol Chem 1987;262:12904-12907
13. Chacko GK: Modification of human high density lipoprotein (HDL₃) with tetranitromethane and the effect on its binding to isolated rat liver plasma membranes. *J Lipid Res* 1985;26: 745–750

25. Key Words • cholesterol removal • fibroblasts • high density lipoprotein apolipoproteins • protease treatment
High density lipoprotein apolipoproteins mediate removal of sterol from intracellular pools but not from plasma membranes of cholesterol-loaded fibroblasts.

J F Oram, A J Mendez, J P Slotte and T F Johnson

Arterioscler Thromb Vasc Biol. 1991;11:403-414
doi: 10.1161/01.ATV.11.2.403

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1991 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/11/2/403

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org/subscriptions/