Skip to main content
  • American Heart Association
  • Science Volunteer
  • Warning Signs
  • Advanced Search
  • Donate

  • Home
  • About this Journal
    • Editorial Board
    • Meet the Editors
    • ATVB Journal History
    • General Statistics
  • All Issues
  • Subjects
    • All Subjects
    • Arrhythmia and Electrophysiology
    • Basic, Translational, and Clinical Research
    • Critical Care and Resuscitation
    • Epidemiology, Lifestyle, and Prevention
    • Genetics
    • Heart Failure and Cardiac Disease
    • Hypertension
    • Imaging and Diagnostic Testing
    • Intervention, Surgery, Transplantation
    • Quality and Outcomes
    • Stroke
    • Vascular Disease
  • Browse Features
    • Cover Art Award
    • ATVB Early Career Award
    • ATVB in Focus
    • Recent Brief Reviews of ATVB
    • Lecture Series
    • Collections
    • Recent Highlights of ATVB
    • Commentaries
    • Browse Abstracts
    • Insight into ATVB Authors
  • Resources
    • Instructions for Authors
    • Online Submission/Peer Review Site
    • Council on ATVB
    • Permissions and Rights Q&A
    • AHA Guidelines and Statements
    • Customer Service and Ordering Information
    • Author Reprints
    • International Users
    • AHA Newsroom
  • AHA Journals
    • AHA Journals Home
    • Arteriosclerosis, Thrombosis, and Vascular Biology (ATVB)
    • Circulation
    • → Circ: Arrhythmia and Electrophysiology
    • → Circ: Genomic and Precision Medicine
    • → Circ: Cardiovascular Imaging
    • → Circ: Cardiovascular Interventions
    • → Circ: Cardiovascular Quality & Outcomes
    • → Circ: Heart Failure
    • Circulation Research
    • Hypertension
    • Stroke
    • Journal of the American Heart Association
  • Facebook
  • LinkedIn
  • Twitter

  • My alerts
  • Sign In
  • Join

  • Advanced search

Header Publisher Menu

  • American Heart Association
  • Science Volunteer
  • Warning Signs
  • Advanced Search
  • Donate

Arteriosclerosis, Thrombosis, and Vascular Biology

  • My alerts
  • Sign In
  • Join

  • Facebook
  • LinkedIn
  • Twitter
  • Home
  • About this Journal
    • Editorial Board
    • Meet the Editors
    • ATVB Journal History
    • General Statistics
  • All Issues
  • Subjects
    • All Subjects
    • Arrhythmia and Electrophysiology
    • Basic, Translational, and Clinical Research
    • Critical Care and Resuscitation
    • Epidemiology, Lifestyle, and Prevention
    • Genetics
    • Heart Failure and Cardiac Disease
    • Hypertension
    • Imaging and Diagnostic Testing
    • Intervention, Surgery, Transplantation
    • Quality and Outcomes
    • Stroke
    • Vascular Disease
  • Browse Features
    • Cover Art Award
    • ATVB Early Career Award
    • ATVB in Focus
    • Recent Brief Reviews of ATVB
    • Lecture Series
    • Collections
    • Recent Highlights of ATVB
    • Commentaries
    • Browse Abstracts
    • Insight into ATVB Authors
  • Resources
    • Instructions for Authors
    • Online Submission/Peer Review Site
    • Council on ATVB
    • Permissions and Rights Q&A
    • AHA Guidelines and Statements
    • Customer Service and Ordering Information
    • Author Reprints
    • International Users
    • AHA Newsroom
  • AHA Journals
    • AHA Journals Home
    • Arteriosclerosis, Thrombosis, and Vascular Biology (ATVB)
    • Circulation
    • → Circ: Arrhythmia and Electrophysiology
    • → Circ: Genomic and Precision Medicine
    • → Circ: Cardiovascular Imaging
    • → Circ: Cardiovascular Interventions
    • → Circ: Cardiovascular Quality & Outcomes
    • → Circ: Heart Failure
    • Circulation Research
    • Hypertension
    • Stroke
    • Journal of the American Heart Association
ARTICLES

Superoxide initiates oxidation of low density lipoprotein by human monocytes.

K Hiramatsu, H Rosen, J W Heinecke, G Wolfbauer, A Chait
https://doi.org/10.1161/01.ATV.7.1.55
Arteriosclerosis, Thrombosis, and Vascular Biology. 1987;7:55-60
Originally published January 1, 1987
K Hiramatsu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H Rosen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J W Heinecke
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Wolfbauer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Chait
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters

Jump to

  • Article
  • Info & Metrics
  • eLetters
Loading

Abstract

Human mononuclear cells were used to evaluate the role of superoxide in the oxidation of low density lipoprotein (LDL). Unstimulated cells produced little superoxide or LDL oxidation as assayed by lipid peroxide content. Stimulation of the cells with phorbol myristate acetate (PMA) resulted in an increase both in superoxide production and in LDL oxidation. Mononuclear cell-mediated LDL oxidation was time- and cell number-dependent and was markedly enhanced by the presence of Fe (10 microM). Superoxide was required for the initiation of LDL oxidation as indicated by inhibition of the reaction by early addition of superoxide dismutase (SOD). Propagation of LDL oxidation was superoxide-independent, since the later addition of SOD resulted in progressively less inhibition of LDL oxidation. Propagation of LDL oxidation also was, in part, cell-independent as indicated by continued oxidation of LDL when mononuclear cells were removed following a 1 to 8 hour period with cells. Optimal LDL oxidation required the presence of mononuclear cells throughout the incubation period, suggesting that cellular factors in addition to superoxide play a role in LDL oxidation. Further evidence for the role of superoxide in the oxidation of LDL by mononuclear cells was obtained with cells from patients with genetic deficiencies of either superoxide generation (chronic granulomatous disease) or myeloperoxidase. PMA-stimulated cells from a patient with chronic granulomatous disease neither generated superoxide nor modified LDL. Incubation of LDL with cells from a patient with myeloperoxidase deficiency (in which superoxide production is normal or increased) resulted in oxidation of the lipoprotein equivalent to that observed with normal cells. Other inhibitors of oxidation reactions also were tested.(ABSTRACT TRUNCATED AT 250 WORDS)

  • Copyright © 1987 by American Heart Association
Back to top
Previous ArticleNext Article

This Issue

Arteriosclerosis, Thrombosis, and Vascular Biology
January 1987, Volume 7, Issue 1
  • Table of Contents
Previous ArticleNext Article

Jump to

  • Article
  • Info & Metrics
  • eLetters

Article Tools

  • Citation Tools
    Superoxide initiates oxidation of low density lipoprotein by human monocytes.
    K Hiramatsu, H Rosen, J W Heinecke, G Wolfbauer and A Chait
    Arteriosclerosis, Thrombosis, and Vascular Biology. 1987;7:55-60, originally published January 1, 1987
    https://doi.org/10.1161/01.ATV.7.1.55

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
  • Article Alerts
    Log in to Email Alerts with your email address.
  • Save to my folders

Share this Article

  • Email

    Thank you for your interest in spreading the word on Arteriosclerosis, Thrombosis, and Vascular Biology.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Superoxide initiates oxidation of low density lipoprotein by human monocytes.
    (Your Name) has sent you a message from Arteriosclerosis, Thrombosis, and Vascular Biology
    (Your Name) thought you would like to see the Arteriosclerosis, Thrombosis, and Vascular Biology web site.
  • Share on Social Media
    Superoxide initiates oxidation of low density lipoprotein by human monocytes.
    K Hiramatsu, H Rosen, J W Heinecke, G Wolfbauer and A Chait
    Arteriosclerosis, Thrombosis, and Vascular Biology. 1987;7:55-60, originally published January 1, 1987
    https://doi.org/10.1161/01.ATV.7.1.55
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo

Related Articles

Cited By...

Arteriosclerosis, Thrombosis, and Vascular Biology

  • About ATVB
  • Instructions for Authors
  • AHA CME
  • Meeting Abstracts
  • Permissions
  • Email Alerts
  • Open Access Information
  • AHA Journals RSS
  • AHA Newsroom

Contact the Editorial Office:
email: atvb@atvb.org

Information for:
  • Advertisers
  • Subscribers
  • Subscriber Help
  • Institutions / Librarians
  • Institutional Subscriptions FAQ
  • International Users
American Heart Association Learn and Live
National Center
7272 Greenville Ave.
Dallas, TX 75231

Customer Service

  • 1-800-AHA-USA-1
  • 1-800-242-8721
  • Local Info
  • Contact Us

About Us

Our mission is to build healthier lives, free of cardiovascular diseases and stroke. That single purpose drives all we do. The need for our work is beyond question. Find Out More about the American Heart Association

  • Careers
  • SHOP
  • Latest Heart and Stroke News
  • AHA/ASA Media Newsroom

Our Sites

  • American Heart Association
  • American Stroke Association
  • For Professionals
  • More Sites

Take Action

  • Advocate
  • Donate
  • Planned Giving
  • Volunteer

Online Communities

  • AFib Support
  • Garden Community
  • Patient Support Network
  • Professional Online Network

Follow Us:

  • Follow Circulation on Twitter
  • Visit Circulation on Facebook
  • Follow Circulation on Google Plus
  • Follow Circulation on Instagram
  • Follow Circulation on Pinterest
  • Follow Circulation on YouTube
  • Rss Feeds
  • Privacy Policy
  • Copyright
  • Ethics Policy
  • Conflict of Interest Policy
  • Linking Policy
  • Diversity
  • Careers

©2018 American Heart Association, Inc. All rights reserved. Unauthorized use prohibited. The American Heart Association is a qualified 501(c)(3) tax-exempt organization.
*Red Dress™ DHHS, Go Red™ AHA; National Wear Red Day ® is a registered trademark.

  • PUTTING PATIENTS FIRST National Health Council Standards of Excellence Certification Program
  • BBB Accredited Charity
  • Comodo Secured