Skip to main content
  • American Heart Association
  • Science Volunteer
  • Warning Signs
  • Advanced Search
  • Donate

  • Home
  • About this Journal
    • Editorial Board
    • Meet the Editors
    • ATVB Journal History
    • General Statistics
  • All Issues
  • Subjects
    • All Subjects
    • Arrhythmia and Electrophysiology
    • Basic, Translational, and Clinical Research
    • Critical Care and Resuscitation
    • Epidemiology, Lifestyle, and Prevention
    • Genetics
    • Heart Failure and Cardiac Disease
    • Hypertension
    • Imaging and Diagnostic Testing
    • Intervention, Surgery, Transplantation
    • Quality and Outcomes
    • Stroke
    • Vascular Disease
  • Browse Features
    • Cover Art Award
    • ATVB Early Career Award
    • ATVB in Focus
    • Recent Brief Reviews of ATVB
    • Lecture Series
    • Collections
    • Recent Highlights of ATVB
    • Commentaries
    • Browse Abstracts
    • Insight into ATVB Authors
  • Resources
    • Instructions for Authors
    • Online Submission/Peer Review Site
    • Council on ATVB
    • Permissions and Rights Q&A
    • AHA Guidelines and Statements
    • Customer Service and Ordering Information
    • Author Reprints
    • International Users
    • AHA Newsroom
  • AHA Journals
    • AHA Journals Home
    • Arteriosclerosis, Thrombosis, and Vascular Biology (ATVB)
    • Circulation
    • → Circ: Arrhythmia and Electrophysiology
    • → Circ: Genomic and Precision Medicine
    • → Circ: Cardiovascular Imaging
    • → Circ: Cardiovascular Interventions
    • → Circ: Cardiovascular Quality & Outcomes
    • → Circ: Heart Failure
    • Circulation Research
    • Hypertension
    • Stroke
    • Journal of the American Heart Association
  • Facebook
  • LinkedIn
  • Twitter

  • My alerts
  • Sign In
  • Join

  • Advanced search

Header Publisher Menu

  • American Heart Association
  • Science Volunteer
  • Warning Signs
  • Advanced Search
  • Donate

Arteriosclerosis, Thrombosis, and Vascular Biology

  • My alerts
  • Sign In
  • Join

  • Facebook
  • LinkedIn
  • Twitter
  • Home
  • About this Journal
    • Editorial Board
    • Meet the Editors
    • ATVB Journal History
    • General Statistics
  • All Issues
  • Subjects
    • All Subjects
    • Arrhythmia and Electrophysiology
    • Basic, Translational, and Clinical Research
    • Critical Care and Resuscitation
    • Epidemiology, Lifestyle, and Prevention
    • Genetics
    • Heart Failure and Cardiac Disease
    • Hypertension
    • Imaging and Diagnostic Testing
    • Intervention, Surgery, Transplantation
    • Quality and Outcomes
    • Stroke
    • Vascular Disease
  • Browse Features
    • Cover Art Award
    • ATVB Early Career Award
    • ATVB in Focus
    • Recent Brief Reviews of ATVB
    • Lecture Series
    • Collections
    • Recent Highlights of ATVB
    • Commentaries
    • Browse Abstracts
    • Insight into ATVB Authors
  • Resources
    • Instructions for Authors
    • Online Submission/Peer Review Site
    • Council on ATVB
    • Permissions and Rights Q&A
    • AHA Guidelines and Statements
    • Customer Service and Ordering Information
    • Author Reprints
    • International Users
    • AHA Newsroom
  • AHA Journals
    • AHA Journals Home
    • Arteriosclerosis, Thrombosis, and Vascular Biology (ATVB)
    • Circulation
    • → Circ: Arrhythmia and Electrophysiology
    • → Circ: Genomic and Precision Medicine
    • → Circ: Cardiovascular Imaging
    • → Circ: Cardiovascular Interventions
    • → Circ: Cardiovascular Quality & Outcomes
    • → Circ: Heart Failure
    • Circulation Research
    • Hypertension
    • Stroke
    • Journal of the American Heart Association
Poster Abstract PresentationsSession Title: Poster Session III

Abstract 622: Development of an Antioxidized Phospholipid Neutralizing Antibody as an Atheroprotective Therapeutic Agent

Olga A Cherepanova, Gary K Owens
Arteriosclerosis, Thrombosis, and Vascular Biology. 2014;34:A622
Olga A Cherepanova
Cardiovascular Rsch Cntr, Univ of Virginia, Charlottesville, VA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gary K Owens
Cardiovascular Rsch Cntr, Univ of Virginia, Charlottesville, VA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics

Jump to

  • Article
  • Info & Metrics
  • eLetters
Loading

Abstract

Atherosclerosis is a chronic disease of the arterial wall, which contributes to >40% of all deaths in developed societies. Widespread use of statins and life style modifications within developed nations have resulted in modest reductions in the incidences and severity of atherosclerotic disease, but as yet there is no clear evidence that statins can prevent late stage clinical consequences of atherosclerosis including plaque rupture with possible myocardial infarction or stroke.

Atherosclerosis is a complex disease characterized by two key processes, lipid deposition and inflammation within the arterial wall, and oxidative stress providing the link between the two. Oxidized phospholipids (OxPL), such as oxidized PAPC (1-palmitoil-2-arachodonoyl-sn-glycero-3-phosphorylcholine) and its derivatives are the biologically active components of minimally oxidized LDL, whose role in cardiovascular diseases is well recognized. Atherosclerotic ApoE knockout (KO) mice fed a high fat Western diet develop antibodies (Abs) to OxPL, and hybridoma B cell lines producing natural auto-Abs against OxPL have been successfully generated and characterized. However, as yet, no studies have been reported demonstrating that treatment with OxPL neutralizing Abs can be used to prevent or reverse atherosclerosis.

Of major importance, we recently generated an anti-OxPL auto-Ab (10C12) that demonstrates potent OxPL neutralizing activity in vitro. Sequence analysis showed that 10C12 Ab is structurally different from previously described anti-OxPL EO6 type neutralizing Abs. Moreover, we found that 10C12 Ab injections (IP, twice a week) in ApoE KO mice fed a Western diet for four weeks resulted in: 1) high circulating titers of Abs to OxPL as measured by ELISA; 2) significantly decreased accumulation of macrophages within the brachiocephalic artery, a site of advanced plaque formation in mice; and 3) a decreased OxPL-induced inflammatory response following IP injection of OxPL as determined by analysis of inflammatory gene expression in abdominal lavage cells.

Results of our work give insight into the role of OxPL in atherosclerosis and lead to potential novel therapeutic approaches to treat it or prevent clinical complications of atherosclerosis.

Key Words:
  • oxidized phospholipids
  • athero-protective antibody
  • Author Disclosures: O.A. Cherepanova: None. G.K. Owens: None.

  • © 2014 by American Heart Association, Inc.
Back to top
Previous Article

This Issue

Arteriosclerosis, Thrombosis, and Vascular Biology
May 2014, Volume 34, Issue Suppl 1
  • Table of Contents
Previous Article

Jump to

  • Article
  • Info & Metrics

Article Tools

  • Citation Tools
    Abstract 622: Development of an Antioxidized Phospholipid Neutralizing Antibody as an Atheroprotective Therapeutic Agent
    Olga A Cherepanova and Gary K Owens
    Arteriosclerosis, Thrombosis, and Vascular Biology. 2014;34:A622, originally published September 3, 2014

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
  • Article Alerts
    Log in to Email Alerts with your email address.
  • Save to my folders

Share this Article

  • Email

    Thank you for your interest in spreading the word on Arteriosclerosis, Thrombosis, and Vascular Biology.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Abstract 622: Development of an Antioxidized Phospholipid Neutralizing Antibody as an Atheroprotective Therapeutic Agent
    (Your Name) has sent you a message from Arteriosclerosis, Thrombosis, and Vascular Biology
    (Your Name) thought you would like to see the Arteriosclerosis, Thrombosis, and Vascular Biology web site.
  • Share on Social Media
    Abstract 622: Development of an Antioxidized Phospholipid Neutralizing Antibody as an Atheroprotective Therapeutic Agent
    Olga A Cherepanova and Gary K Owens
    Arteriosclerosis, Thrombosis, and Vascular Biology. 2014;34:A622, originally published September 3, 2014
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo

Related Articles

Cited By...

Arteriosclerosis, Thrombosis, and Vascular Biology

  • About ATVB
  • AHA CME
  • Meeting Abstracts
  • Permissions
  • Email Alerts
  • Open Access Information
  • AHA Journals RSS
  • AHA Newsroom

Contact the Editorial Office:
email: atvb@atvb.org

Information for:
  • Advertisers
  • Subscribers
  • Subscriber Help
  • Institutions / Librarians
  • Institutional Subscriptions FAQ
  • International Users
American Heart Association Learn and Live
National Center
7272 Greenville Ave.
Dallas, TX 75231

Customer Service

  • 1-800-AHA-USA-1
  • 1-800-242-8721
  • Local Info
  • Contact Us

About Us

Our mission is to build healthier lives, free of cardiovascular diseases and stroke. That single purpose drives all we do. The need for our work is beyond question. Find Out More about the American Heart Association

  • Careers
  • SHOP
  • Latest Heart and Stroke News
  • AHA/ASA Media Newsroom

Our Sites

  • American Heart Association
  • American Stroke Association
  • For Professionals
  • More Sites

Take Action

  • Advocate
  • Donate
  • Planned Giving
  • Volunteer

Online Communities

  • AFib Support
  • Garden Community
  • Patient Support Network
  • Professional Online Network

Follow Us:

  • Follow Circulation on Twitter
  • Visit Circulation on Facebook
  • Follow Circulation on Google Plus
  • Follow Circulation on Instagram
  • Follow Circulation on Pinterest
  • Follow Circulation on YouTube
  • Rss Feeds
  • Privacy Policy
  • Copyright
  • Ethics Policy
  • Conflict of Interest Policy
  • Linking Policy
  • Diversity
  • Careers

©2018 American Heart Association, Inc. All rights reserved. Unauthorized use prohibited. The American Heart Association is a qualified 501(c)(3) tax-exempt organization.
*Red Dress™ DHHS, Go Red™ AHA; National Wear Red Day ® is a registered trademark.

  • PUTTING PATIENTS FIRST National Health Council Standards of Excellence Certification Program
  • BBB Accredited Charity
  • Comodo Secured