Skip to main content
  • American Heart Association
  • Science Volunteer
  • Warning Signs
  • Advanced Search
  • Donate

  • Home
  • About this Journal
    • Editorial Board
    • Meet the Editors
    • ATVB Journal History
    • General Statistics
  • All Issues
  • Subjects
    • All Subjects
    • Arrhythmia and Electrophysiology
    • Basic, Translational, and Clinical Research
    • Critical Care and Resuscitation
    • Epidemiology, Lifestyle, and Prevention
    • Genetics
    • Heart Failure and Cardiac Disease
    • Hypertension
    • Imaging and Diagnostic Testing
    • Intervention, Surgery, Transplantation
    • Quality and Outcomes
    • Stroke
    • Vascular Disease
  • Browse Features
    • Cover Art Award
    • ATVB Early Career Award
    • ATVB in Focus
    • Recent Brief Reviews of ATVB
    • Lecture Series
    • Collections
    • Recent Highlights of ATVB
    • Commentaries
    • Browse Abstracts
    • Insight into ATVB Authors
  • Resources
    • Instructions for Authors
    • Online Submission/Peer Review Site
    • Council on ATVB
    • Permissions and Rights Q&A
    • AHA Guidelines and Statements
    • Customer Service and Ordering Information
    • Author Reprints
    • International Users
    • AHA Newsroom
  • AHA Journals
    • AHA Journals Home
    • Arteriosclerosis, Thrombosis, and Vascular Biology (ATVB)
    • Circulation
    • → Circ: Arrhythmia and Electrophysiology
    • → Circ: Genomic and Precision Medicine
    • → Circ: Cardiovascular Imaging
    • → Circ: Cardiovascular Interventions
    • → Circ: Cardiovascular Quality & Outcomes
    • → Circ: Heart Failure
    • Circulation Research
    • Hypertension
    • Stroke
    • Journal of the American Heart Association
  • Facebook
  • LinkedIn
  • Twitter

  • My alerts
  • Sign In
  • Join

  • Advanced search

Header Publisher Menu

  • American Heart Association
  • Science Volunteer
  • Warning Signs
  • Advanced Search
  • Donate

Arteriosclerosis, Thrombosis, and Vascular Biology

  • My alerts
  • Sign In
  • Join

  • Facebook
  • LinkedIn
  • Twitter
  • Home
  • About this Journal
    • Editorial Board
    • Meet the Editors
    • ATVB Journal History
    • General Statistics
  • All Issues
  • Subjects
    • All Subjects
    • Arrhythmia and Electrophysiology
    • Basic, Translational, and Clinical Research
    • Critical Care and Resuscitation
    • Epidemiology, Lifestyle, and Prevention
    • Genetics
    • Heart Failure and Cardiac Disease
    • Hypertension
    • Imaging and Diagnostic Testing
    • Intervention, Surgery, Transplantation
    • Quality and Outcomes
    • Stroke
    • Vascular Disease
  • Browse Features
    • Cover Art Award
    • ATVB Early Career Award
    • ATVB in Focus
    • Recent Brief Reviews of ATVB
    • Lecture Series
    • Collections
    • Recent Highlights of ATVB
    • Commentaries
    • Browse Abstracts
    • Insight into ATVB Authors
  • Resources
    • Instructions for Authors
    • Online Submission/Peer Review Site
    • Council on ATVB
    • Permissions and Rights Q&A
    • AHA Guidelines and Statements
    • Customer Service and Ordering Information
    • Author Reprints
    • International Users
    • AHA Newsroom
  • AHA Journals
    • AHA Journals Home
    • Arteriosclerosis, Thrombosis, and Vascular Biology (ATVB)
    • Circulation
    • → Circ: Arrhythmia and Electrophysiology
    • → Circ: Genomic and Precision Medicine
    • → Circ: Cardiovascular Imaging
    • → Circ: Cardiovascular Interventions
    • → Circ: Cardiovascular Quality & Outcomes
    • → Circ: Heart Failure
    • Circulation Research
    • Hypertension
    • Stroke
    • Journal of the American Heart Association
ARTICLES

Alterations in human vascular endothelial cell function by oxygen free radicals. Platelet adherence and prostacyclin release.

M A Shatos, J M Doherty, J C Hoak
Download PDF
https://doi.org/10.1161/01.ATV.11.3.594
Arteriosclerosis, Thrombosis, and Vascular Biology. 1991;11:594-601
Originally published May 1, 1991
M A Shatos
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J M Doherty
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J C Hoak
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters

Jump to

  • Article
  • Info & Metrics
  • eLetters
Loading

Abstract

This study was directed to the ability of oxygen free radicals to cause reversible vascular endothelial cell dysfunction. A well-characterized system for the production of the superoxide anion radical (O2(-).) and hydrogen peroxide (H2O2), employing xanthine and xanthine oxidase, was used to sublethally injure human umbilical vein endothelial (HUVE) cells in vitro. We examined the effects of a 15-minute incubation of HUVE cells with xanthine (50 microM) and xanthine oxidase (2.5-100 munits) on platelet adherence and prostacyclin (PGI2) release. All experiments were conducted in a serum-free N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid)-Tyrode buffer (pH 7.4) incubation system. Exposure of HUVE cells to sublethal concentrations of oxygen free radicals caused significant enhancement of platelet adherence (65 +/- 6.3%) to injured endothelium. A 12-fold increase in PGI2 release resulted after a 15-minute treatment with xanthine and xanthine oxidase. The addition of exogenous PGI2 (150 mM) to platelet-endothelial systems did not completely prevent the enhanced platelet adherence, suggesting that a lack of PGI2 was not completely responsible for the adherence of platelets to O2(-).-injured cells. When superoxide dismutase (SOD) and catalase, scavengers of O2(-). and H2O2, were added in combination to treated cells, platelet adherence decreased by 42-77% and PGI2 release approached that of control cultures. No decrease in either platelet adherence or PGI2 release occurred when chemically inactivated forms of SOD and catalase or bovine serum albumin were added to oxidant-treated cultures.

  • Copyright © 1991 by American Heart Association
Back to top
Previous ArticleNext Article

This Issue

Arteriosclerosis, Thrombosis, and Vascular Biology
May 1991, Volume 11, Issue 3
  • Table of Contents
Previous ArticleNext Article

Jump to

  • Article
  • Info & Metrics
  • eLetters

Article Tools

  • Print
  • Citation Tools
    Alterations in human vascular endothelial cell function by oxygen free radicals. Platelet adherence and prostacyclin release.
    M A Shatos, J M Doherty and J C Hoak
    Arteriosclerosis, Thrombosis, and Vascular Biology. 1991;11:594-601, originally published May 1, 1991
    https://doi.org/10.1161/01.ATV.11.3.594

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
  • Article Alerts
    Log in to Email Alerts with your email address.
  • Save to my folders

Share this Article

  • Email

    Thank you for your interest in spreading the word on Arteriosclerosis, Thrombosis, and Vascular Biology.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Alterations in human vascular endothelial cell function by oxygen free radicals. Platelet adherence and prostacyclin release.
    (Your Name) has sent you a message from Arteriosclerosis, Thrombosis, and Vascular Biology
    (Your Name) thought you would like to see the Arteriosclerosis, Thrombosis, and Vascular Biology web site.
  • Share on Social Media
    Alterations in human vascular endothelial cell function by oxygen free radicals. Platelet adherence and prostacyclin release.
    M A Shatos, J M Doherty and J C Hoak
    Arteriosclerosis, Thrombosis, and Vascular Biology. 1991;11:594-601, originally published May 1, 1991
    https://doi.org/10.1161/01.ATV.11.3.594
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo

Related Articles

Cited By...

Arteriosclerosis, Thrombosis, and Vascular Biology

  • About ATVB
  • AHA CME
  • Meeting Abstracts
  • Permissions
  • Email Alerts
  • Open Access Information
  • AHA Journals RSS
  • AHA Newsroom

Contact the Editorial Office:
email: atvb@atvb.org

Information for:
  • Advertisers
  • Subscribers
  • Subscriber Help
  • Institutions / Librarians
  • Institutional Subscriptions FAQ
  • International Users
American Heart Association Learn and Live
National Center
7272 Greenville Ave.
Dallas, TX 75231

Customer Service

  • 1-800-AHA-USA-1
  • 1-800-242-8721
  • Local Info
  • Contact Us

About Us

Our mission is to build healthier lives, free of cardiovascular diseases and stroke. That single purpose drives all we do. The need for our work is beyond question. Find Out More about the American Heart Association

  • Careers
  • SHOP
  • Latest Heart and Stroke News
  • AHA/ASA Media Newsroom

Our Sites

  • American Heart Association
  • American Stroke Association
  • For Professionals
  • More Sites

Take Action

  • Advocate
  • Donate
  • Planned Giving
  • Volunteer

Online Communities

  • AFib Support
  • Garden Community
  • Patient Support Network
  • Professional Online Network

Follow Us:

  • Follow Circulation on Twitter
  • Visit Circulation on Facebook
  • Follow Circulation on Google Plus
  • Follow Circulation on Instagram
  • Follow Circulation on Pinterest
  • Follow Circulation on YouTube
  • Rss Feeds
  • Privacy Policy
  • Copyright
  • Ethics Policy
  • Conflict of Interest Policy
  • Linking Policy
  • Diversity
  • Careers

©2018 American Heart Association, Inc. All rights reserved. Unauthorized use prohibited. The American Heart Association is a qualified 501(c)(3) tax-exempt organization.
*Red Dress™ DHHS, Go Red™ AHA; National Wear Red Day ® is a registered trademark.

  • PUTTING PATIENTS FIRST National Health Council Standards of Excellence Certification Program
  • BBB Accredited Charity
  • Comodo Secured